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The Practical Application of the Fourier Integral 1

By GEORGE A. CAMPBELL

Abstract: The growing practical importance of transients and other

non-periodic phenomena makes it desirable to simplify the application of

the Fourier integral in particular problems of this kind and to extend

the range of problems which can be solved in closed form by this method.

Unless the physicist or technician is in a position to evaluate the definite

integrals which occur, by mechanical means, he is usually entirely de-

pendent upon the results obtained by the professional mathematician.

To facilitate the use of the known closed form evaluations of Fourier

integrals many of them have been compiled and tabulated in Table I. They
are presented, however, not as definite integrals but as paired functions, one

function being the coefficient for the cisoidal oscillation (or complex expo-

nential) and the other function the reciprocally related coefficient for the

unit impulse. This arrangement simplifies the table and promises to be

most convenient in practical applications, since it is the coefficients of which

immediate use is made, just as in the case of the Fourier series. Applica-

tions of the tabulated coefficient pairs to 85 transient problems are given,

together with all necessary details, in Table II.

Introduction

THE Fourier integral and the Fourier series are alternative expres-

sions of the Fourier theorem, the series being a limiting case of

the integral and vice versa. Usually the theorem is approached

from the side of the series, but there are also advantages in the approach

from the integral side, which is the method followed in this paper.

The generality and importance of the theorem is well expressed by

Kelvin and Tait who said: "... Fourier's Theorem, which is not

only one of the most beautiful results of modern analysis, but may
be said to furnish an indispensable instrument in the treatment of

nearly every recondite question in modern physics. To mention only

sonorous vibrations, the propagation of electric signals along a tele-

graph wire, and the conduction of heat by the earth's crust, as subjects

in their generality intractable without it, is to give but a feeble idea

of its importance." For any real understanding of the theorem it is

necessary to appreciate why it is one of the most beautiful mathe-

matical results and why it furnishes an indispensable instrument in

physics.

The Fourier integral is a most beautiful mathematical result because

of the economy of means employed in obtaining a most general result.

1 Presented September 13, 1927, in preliminary form at the International Congress

of Telegraphy and Telephony in Commemoration of Volta.
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One form of integral is used both to analyze and to synthesize.

In both cases it is the product of the arbitrary function and

the elementary sinusoidal oscillation which is integrated. This

achieves the mathematical counterpart of spectrum analysis and

spectrum synthesis. The functions resulting from analysis and

synthesis stand in a mutually reciprocal relation.2 They are paired

with each other. Either of these functions may be assigned with an

astonishing degree of arbitrariness. Singular cases being excepted, the

mate function is then determined uniquely and definitely by the

integral. While the sine, cosine and complex exponential are most

commonly used as the elementary expansion functions, an entire class

of functions present the same fundamental relations and find applica-

tions in the more recondite problems.

The Fourier integral is an indispensable instrument in connection

with physical systems in which cause and effect are linearly related

(so that the principle of superposition holds) because it gives at once

an explicit formal solution of general problems in terms of the solution

for the sinusoidal case which is often readily found. This explicit

general solution makes use of two Fourier integrals, one for the spec-

trum analysis of the arbitrary cause and the other for the spectrum

synthesis of the component sinusoidal solutions. No further con-

sideration of the actual physical system is necessary after the ele-

mentary sinusoidal solution has been obtained. This point of view

has become a part of our general background of thought.

Unfortunately the actual evaluation of specific Fourier integrals in

closed form presents formidable if not insuperable difficulties. Only

a small number of distinct general integrals have been evaluated in

closed form in the century and more which has elapsed since the Fourier

integral discovery was announced. Additions to the list of evaluated

Fourier integrals can ordinarily be made only by the professional

mathematician. Unless the physicist or technician is in a position to

evaluate Fourier integrals by mechanical means, or is satisfied to

employ infinite series or other infinite processes in place of the definite

integrals, he is usually entirely dependent upon the evaluations which

the professional mathematician has made in the past or is able to

make for his special use. On this account, it is often desirable to so

formulate practical problems that only evaluated Fourier integrals

will occur. It would be well for the physicist and technician to become

familiar with the Fourier integral evaluations which the professional

mathematician has achieved.

2 The fundamental importance of the Fourier integral may be associated with an
analogy which exists between the integral and the imaginary unit, both considered
as operators. In both cases two iterations of the operation merely change a sign

and four iterations completely restore the original function.
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It is the purpose of this paper to take the first steps towards the

preparation of two tables, one giving the evaluations of Fourier

integrals and the other giving the sinusoidal solutions for physical

systems. Together they would reduce the practical application of

the Fourier integral to the selection of three results from these two
tables. Thus by means of the first table the arbitrary cause could be

resolved into a sum of sinusoidal causes ; by means of the second table

the solutions for these sinusoidal causes could be supplied; and,

finally, by means of the first table again, the effect of superposing

these sinusoidal solutions could be shown, and thus the answer to the

original problem would be given.

The preparation of the tables calls primarily for a compilation of the

results already obtained by pure analysis, after which new evaluations

and new solutions should be added, in so far as is possible. No attempt

has yet been made to completely cover the existing literature on the

subject, which extends back over one hundred years and is extensive

and widely scattered. But sufficient has been done to show that the

forms of the tables which are proposed are most convenient for prac-

tical application.

Paired Coefficients—Terminology

The Fourier integral theorem has been expressed in several slightly

different forms to better adapt it for particular applications. It has

been recognized, almost from the start, however, that the form which

best combines mathematical simplicity and complete generality makes
use of the exponential oscillating function e

{
" nIt

. More recently the

overwhelming advantage of using this oscillating function in the

discussion of sinusoidal oscillatory systems has been generally recog-

nized. It is, therefore, plain that this oscillating function should be

adopted as the basic oscillation for both of the proposed tables. A
name for this oscillation, associating it with sines and cosines, rather

than with the real exponential function, seems desirable. The abbre-

viation cis x for (cos x -\- i sin x) suggests that we name this function

a cis or a cisoidal oscillation. This term is tentatively employed in

this paper. The notation cis(27r//) is also employed where it is

desired to use an expression which is essentially one-valued, which

avoids the use of exponentials, or which suggests periodic oscillations

by its connection with cosine and sine.3

8 Since the cisoidal oscillation is simply a uniform rotation at unit distance about
the origin in the complex plane, it may be desirable to try some compact notation
which directly suggests this rotation; for example, ru(ft), W, i*" might be defined
as the complex quantity obtained by rotating unity through // complete turns or
Aft quadrants.
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In a table of Fourier integrals, every integral expression would then

contain, in addition to the arbitrary function F(f), the same oscillat-

ing function da(2vft) t
the same integral sign with limits — oo, +00

and the same differential df. To repeat any such group of a dozen

characters in each of several hundred entries seems quite unnecessary.

It is, therefore, proposed merely to tabulate the arbitrary function

F(f) and the value G(t) for the evaluated integral expressed as a

function of the time. The table is thereby reduced to two parallel

columns of associated functions, one of which is employed as the

coefficient of the elementary cisoidal function while the other is

a function of the independent time variable. The table would,

however, be more symmetrical if both of the associated functions

could be regarded as coefficients of an elementary function. This

may be done by introducing the unit impulse as an elementary func-

tion, the impulse occurring at the epoch g at which instant it presents

a unit area whereas its value is zero for all time before and all time

after the epoch g. This is an essentially singular function and to

recognize this fact it will be designated by ^ (* — g) which is intended

to emphasize the singularity. The time function may now be replaced

in the table by the same function of the parameter g, since the time

function G(t) is equal to the integral with respect to g between infinite

limits of the product G(g)£$ (t — g)-

The table of Fourier integrals has now become also a table of paired

coefficient functions. This means that if the coefficient F(f) is em-

ployed with the cisoid, and the coefficient G(g) is employed with the

unit impulse, and both products are summed for the entire infinite

range of their parameters / and g, the same identical resulting time

function is obtained.4 Taken in connection with their respective ele-

mentary functions, the two associated coefficient functions are, there-

fore, equivalent, alternative ways of representing a particular time

function. This is the fundamental geometrical or physical point of

view which is needed in connection with the practical application of

the Fourier integral theorem. For this reason the table has been

headed a table of Paired Coefficients; as explained above, however,

it may equally well be considered to be a table of Fourier Integrals.

There is another fundamental reason for placing both of the func-

tions F(J) and G(g) on the same footing as coefficients. It is this:

4 The use of frequency and epoch as the two parametric variables gives us many
symmetrical formulas where, if the radian frequency were employed, an unsym-
metrical 2ir would occur. In practical applications the frequency of the coefficient

pairs becomes the frequency which is ordinarily employed in acoustics, in music
and in commercial alternating currents. The basic unit for frequency is the reciprocal

second; the unit for epoch is the second.
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Fourier's fundamental discovery was that the two functions may be

transposed in the Fourier integral if the sign of one of the parameters

is reversed. Thus, either one of the two functions constituting any

coefficient pair may be taken as the coefficient of the cisoidal oscilla-

tion, provided only that the proper sign is given the epoch parameter

occurring in the other function. For this reason also both functions

are thus quite properly regarded as coefficients.

It is found convenient to call each coefficient of a coefficient pair

the mate of the other coefficient, pair and mate being employed just

as in the case of gloves. To find the mate of a glove, it is necessary to

know all about the given glove including the fact as to whether it is

the right or the left one of the pair. In the same way, to find the mate

of a coefficient function, it is necessary to know not only the form of the

function, but, in addition, whether its variable is the frequency or the

epoch. The notation d1lG{g), dtiF(f) will be employed to indicate

the mate of the particular coefficient G(g), F(f).

We have now defined and explained the proposed terminology for

use in the practical application of the Fourier integral theorem.

Before proceeding to practical applications, it is desirable to become

familiar with these coefficient pairs considered in their own right.

We may well begin by reminding the reader of the dissimilarity be-

tween the elementary oscillations.

The Two Elementary Functions Contrasted

The dissimilarity between the two elementary functions of the

time, the cisoidal oscillation cis(27r#) and the unit impulse §s>o(t — g)

is most striking. This is clearly shown by the wire models of Fig. 1

where each function is depicted for five values of its parameter. For

the value zero the cisoidal oscillation degenerates into an infinite

straight line parallel to the time axis and cutting the real axis at

x = 1 . For the same value zero of its parameter g, the unit impulse is

zero everywhere except at the origin where it has a vanishingly narrow

loop extending to x = -f «>

.

For other values of the parameter, the cisoidal oscillation is always

an infinite cylindrical helix, centered on the time axis, and passing

through the point x = 1, while the infinite loop of the impulse

function is displaced unchanged along the time axis to t — g. For

positive values of the parameter /, the cisoidal oscillation is a right-

handed helix, with pitch equal to/-1 , and thus decreasing as/ increases.

For negative values of /, the pitch is the same but the helix is left-

handed.

Both functions have essential singularities, which are quite dif-
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ferent both in character and in location. For the cisoidal oscillation

the singularity is always located at t = » ; for the impulse the singu-

larity is at t = g.

The fundamental differences between the two elementary time

functions adapt them for different uses. It is desirable to be in a

position to employ first one and then the other, shifting from one to

the other without any trouble or delay, so that at each step of a

problem the elementary function best suited for use may be employed.

Fig. 1—Wire models of cisoidal oscillations cis (2irft) (above) and of unit impulses

£§o(t — g) (below) for the particular values 0, ± 1/2, ± 3/2, of the parameters/ and g.

For this we require only an adequate table of pairs and a certain

familiarity in the use of the pairs. It is desirable to acquire the habit

of thinking of the coefficients of a pair as alternative representations

of a curve.

The Use of Table I for Obtaining Coefficient Pairs 8

The table is divided into nine parts. In Part 1 are given the general

processes for deriving any coefficient mate; but such processes are to

5 Five other closely related uses may be made of Table I as explained in the

first footnote to that table. Operational expressions are brought within the scope

of the table by substituting for the operator p = d/dg the particular value i2irf,

other possible interpretations of the operator, if any, being ignored.
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be employed only when it is necessary to start from first principles.

All mates which have once been determined may be taken from the

latter sections of the table with a great saving of time and energy.

Part 2 of the table shows the elementary transformations and com-

binations of pairs ; these theorems may be employed either to extend

a given table of coefficient pairs, or to cover a given group of coeffi-

cients with a shorter table of specific pairs. It is assumed that anyone

desiring to make serious use of the table will first become familiar

with these elementary combinations and transformations; even the

simple addition, factor and transposition theorems (201), (205), (217)

are most useful.

Part 3 of the table contains seven pairs, which are called key pairs

because all specific pairs listed in the entire table may apparently be

derived from them by specialization or by passing to a limit after any

necessary use has been made of the elementary combinations and trans-

formations of Part 2, amplified, as indicated, by the removal of certain

unnecessary restrictions to real quantities. If an assigned coefficient

is not included in Part 3 as thus generalized, then this coefficient cannot

be found anywhere in Table I. Part 3, therefore, serves the useful

purpose of giving a bird's-eye view of the entire table. The seven

pairs are presumably redundant as they stand.

For applicational purposes it is most desirable to have a table

which lists the precise pair required; many special cases which have

been used in practical applications may be found in Parts 4-9 of

Table I which constitute a short classified list of particular cases.

It is important to remember that a given coefficient should be looked

for on the other side of the table if it is not found on its own side since

all pairs are transposable by (217) or (218). In the tables as they

stand, some pairs have been transposed, but this is not true in the

majority of cases.

Whenever an infinite process is to be employed, such as infinite

series, integration or differentiation, the permissibility of the process

is a question which must be answered for the particular case in hand;

the formal result given in Table I may break down, for example, if

either the original or the transformed pair is a singular pair. This

general warning necessarily applies to every part of the subject of

coefficient pairs just because it is a part of the general subject of mathe-

matical analysis.

It is intended that the statement of each pair in the entire table

shall eventually include every limitation and every warning which

the mathematical sponsors for that pair would consider necessary to

guarantee its safe use by anyone understanding the fundamental
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nature of coefficient pairs. A beginning has been made by specifying

the branches of multiple-valued functions and the method of approach-

ing limits. When this has been fully carried out, any pair may be taken

from the table and used without the least concern as to the analytical

methods by which the validity of the pairs has been established. Thus

the finished table will make possible a complete separation of the

analytical evaluation of all known Fourier integrals from their practical

applications.

Having now explained, in a general way, the use of Table I, it will

be useful to consider in detail a limited number of the pairs which

are of special practical interest.

General Processes for Deriving the Mate

The table is naturally headed by the two fundamental Fourier

integrals (101), (102) because of their intrinsic importance as explicit

and implicit definitions of coefficient mates. The chief purpose of

the table, however, is to make it possible for the technical man to

make the fullest use of coefficient pairs without concerning himself at

all as to the analytical work of evaluating either of these Fourier

integrals. Pairs (101) and (102) are thus intended to serve mainly

as definitions for the pairs which follow.

The statement has been made that essentially only one Fourier

integral has been evaluated by determining the indefinite integral

and substituting the integration limits. Whether or not this is pre-

cisely true, the statement does illustrate the fact that the formulation

of the Fourier integral does not in itself suggest a practical finite ana-

lytical process for the actual evaluation of the definite integral. No
such system of evaluating definite integrals is known. Writing down
the Fourier integral amounts to little more than definitely formulating

a question.

If the coefficient F(f) is expanded as a finite or infinite series in

powers of/ (or p), the mate is given by pair (106*), and this involves

a finite or infinite series of essentially singular functions which are

further considered below in connection with Fig. 3. If a series

expansion of F(f) is made in terms of any functions of / for which

the mates are known, there is a corresponding series for the mate.

Some of these pairs are shown as (104*)-(112). The possibility of the

formal infinite expansion does not necessarily imply the convergence

of the series in the case of coefficient pairs any more than in other

general developments.

The technical man is not ordinarily a master of infinite series,

definite integrals or other infinite processes. It is, therefore, highly
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desirable to give him coefficient pairs which are in closed form, that is,

involve only a finite number of operations with known functions.

Accordingly, the portion of the table expressible in closed form has

seemed to be the part which should be developed first. Specific pairs

requiring infinite series for their expression have not been included in

this preliminary draft of Table I. The omission of these series and

of other infinite processes does not signify any failure to appreciate

their importance. It is intended to include specific infinite series later.

The Elementary Transformations of Coefficient Pairs

The simple addition theorem (201) is of the greatest practical im-

portance. The summation may include any number of pairs; they

may be quite unrelated, or they may be the successive terms of power
expansions as shown in (106*)—(111*). Next to the addition theorem

we may place the multiplication theorem (202) or (203), special cases of

which are of great practical importance. Among these special cases

are (206)-(211) where any coefficient is multiplied or divided by its

parameter or by a cisoidal oscillation of its parameter.

Any real linear substitution for the frequency and epoch parameters

is made possible by the simple transformations (205)-(207), (214).

The generalization of these transformations by the removal of the

restriction to real numbers is allowable in important cases as is

indicated by the parameters shown in square brackets with each

pair of Part 3.

The differentiation and integration of coefficients with respect to

the frequency, epoch or other parameter give the important trans-

formations (208)-(213).

Some of the simple transformations continue to yield new results

when they are repeated any number of times or when several trans-

formations are combined in sequence. Pairs (216), (218)—(222) are

examples of such combinations. All pairs in Parts 4-9 of this table

may apparently be derived from the seven key pairs of Part 3 by means
of these transformations employing complex parameters as indicated

in Part 3, and passage to a limit in certain cases.

The resolution of pairs into the four types of ^"-multiple pairs, as

shown by pairs (223)—(225), throws considerable light on the nature

of coefficient pairs.

Some of the elementary properties of pairs are expressed in words
as follows:

Elementary Properties of Pairs

(1) The sum or difference of pairs is a pair. Cf. pair (201).

(2) Any constant multiple of a pair is also a pair. Cf. pair (204).
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(3) Any linear combination of pairs is also a pair. Cf. pairs (201),

(204).

(4) The odd and even parts of every pair are also pairs.

(5) If both coefficients of a pair are real, both are even.

(6) If a pair has one real and one pure imaginary coefficient, both

are odd.

(7) If a coefficient is even and real, its mate is also even and real.

(8) If a coefficient is odd and real, its mate is odd and pure imagi-

nary, and vice versa.

(9) If a coefficient is real, its mate has conjugate values for opposite

values of its parameter and conversely. Cf. pair (216).

(10) The conjugates of the coefficients of a pair are also a pair pro-

vided the sign of either frequency / or epoch g is reversed. Cf . pair

(215).

(11) A pair with the signs of both frequency / and epoch g reversed

is also a pair. Cf. pair (214).

(12) The parameter of either coefficient may be multiplied by a

positive real constant provided the other parameter and coefficient are

each divided by the same constant. Cf. pair (205).

(13) Coefficients of a pair may be interchanged if, when interchang-

ing the parameters, the sign of one parameter, either/or g, is reversed.

Cf. pair (217).

(14) Any pair may be resolved uniquely into the sum of four pairs

by pairing together: the even, real parts; the even, imaginary parts;

the odd, real part of each coefficient with the odd, imaginary part of

the other coefficient.

(15) A pair may have the form (F(f), \F(g)) where the multiplier

X is constant, if and only if X has one of the four unit values (1, i,

— 1, — i). Such a pair is called an in-multiple pair. Cf. pair (223).

(16) Any i"-multiple pair has both coefficients odd or even according

as n is odd or even.

(17) Any in-multiple pair with complex coefficients may be resolved

into two ^"-multiple pairs with coefficients which are real or pure

imaginary.

(18) The coefficients of any two *
w-multiple pairs are orthogonal if

the i" multipliers are different.

(19) The coefficients of any four i
n-multiple pairs with different i

n

multipliers are linearly independent.

(20) Any pair may be resolved uniquely into the sum of four i
n-

multiple pairs; i.e., pairs of the form Fn(f), i
nFn (g). Cf. pair (224).

(21) Any pair may be resolved uniquely into the sum of eight i
n-

multiple pairs where Fn(f) is real or pure imaginary. Cf. pair (225)
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Pairs Based on the Normal Error Law

The identical pair (703), exp(— irP), exp(— irg
2
), is one of the

simplest pairs and may well serve as the starting point in the considera-

tion of specific coefficient pairs. Each coefficient is the broad impulse

of the normal error law. It is remarkable that identical coefficients

of this simple form should produce the same identical function when
associated with either the cisoidal oscillation or the very different unit

impulse.

If the differential transformation (222), taking the upper signs, is

applied to the normal error law pair (703), the infinite series of 4>n

pairs (702) is obtained. Of these derived pairs, the first eight are

written out as pairs (704)—(711). The cisoidal coefficients are alter-

nately even and odd functions which oscillate in the neighborhood of

the origin, each successive coefficient having an added half oscillation.

The <£„ pair has (n + 1) half oscillations. Beyond these oscillations,

every coefficient in the infinite sequence decreases rapidly and asymp-
totically to zero in both directions. The mates of these cisoidal

coefficients are identically the same except for a constant coefficient

which is i
n and thus goes cyclically through the four values, 1, i,

- 1, - i.

The <j>n(x) functions are shown by Fig. 2. They are essentially the

parabolic cylinder functions of order n. These coefficients may be

used for the expansion of every function which, with its first two deriva-

tives, is continuous for all positive and negative values of the variable

and for which a certain integral exists. This expansion is known as

the Gram-Charlier series, which appears in pair (112).

Starting again with the normal law of error pair (703) in the form

(701) and setting p = \Pjir, and applying the differential transforma-

tion (208) repeatedly, we obtain the infinite sequence of pairs (713)

of which the first five are listed as pairs (714)—(718). The cisoidal

coefficients are the successive integral powers of p multiplied by the

normal error exponential. The impulse coefficients are essentially the

4>n functions multiplied by the normal error exponentials. These pair,

are plotted in Fig. 3 for the special case /3 = a2 = 1.

Both of the infinite series of pairs derived from the error function

and shown in Figs. 2 and 3 are regular throughout, are nowhere infinites

and vanish at infinity.
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Fig. 2—Curves showing the 4>n (x) functions for n = 0, 1, 2,

*,(*) = expGr*2)P»nexp(- 2ir*2).
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Essentially Singular Pairs for Integral Powers of the

Parameter

If in Fig. 3, with the value of n held fixed, we allow a to approach the

limit 0, the cisoidal coefficient becomes p
n and the impulse coefficient,

which is compressed horizontally towards the origin and expanded

vertically, with corresponding areas increasing as a~n
, ultimately

vanishes everywhere except at the origin where it acquires an essential

oscillating singular point. At the limit, then, a singular pair is ob-

tained; it will be designated as p
n

, i$ n (g)- & n (g) is characterized by
having all of its moments about the origin vanish except the nth

moment, which is equal to (— 1)*»! The dotted graphs on the left of

Fig. 3 show p
n to the scales indicated. The curves on the right show

&n(g) provided we assume that the horizontal scale is increased with a

and the vertical scale increased inversely with an+l as a approaches the

limit 0. Fig. 3 thus serves to picture the essentially singular function

^n(g). That is, it is sufficient if the coefficient maintains this form

while proceeding to the limit. This form is, however, not essential.

It is necessary only that the method of approach to the limit give the

same set of moments.

An alternative way of deriving the mate for the positive integral

powers p
n

is by means of a linear combination of (w -f- 1) pairs of the

form of (603) with parameters equal to a, 2a, 3a, •-, (n + l)a,

respectively, so that the first term in the power series expansion of the

cisoidal coefficient is p
n

. The corresponding impulse coefficient is a

succession of (n + 1) bands, each of width a, the first band beginning

at epoch zero, the heights of the successive bands being equal to the

binomial coefficients for power n divided by an+1 but alternately posi-

tive and negative. The mth moment of this impulse coefficient is

for m < n, equal to (— \)
nn\ for m = n, and proportional to am

~n

for m > n. Upon allowing a to approach zero, the cisoidal coefficient

approaches p
n

, and the impulse coefficient approaches &n(g), since in

the limit the same set of moments is obtained as was found above to

characterize the nth singularity function. This is pair (402*).

The special cases for n — 0, 1 are of most frequent occurrence.

They are pairs (403*), (404*). J^ is the unit impulse since its 0th

moment equals unity; ^i is the doublet with the moment — 1 since

its first moment is — 1. i$i and all higher order singular functions

are included in the series coefficients of (104*), (106*).

Fig. 3 may be extended upward step by step from the normal error

law pair by dividing by p on the left and integrating with respect to g

on the right. At each step a constant of integration is introduced.

The first two pairs thus obtained are pairs (725*) and (726*). Choos-
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« =

n = 1

71 = 2

» = 3

w = 4

Fig. 3—Graphs for the family of pairs pn exp(-7ra2/2
) a iD g

n exp(-irg2/a2
).

The heavy curves show the cases a — 1, » = 0, 1, 2, 3, 4; the dotted curves on the

left are for the same values of n but for the limit a -* 0. On the right the curves

apply for any value of a if the horizontal and vertical scales are multiplied by a and

o~"-1 respectively.
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ing the integration constants so as to make the impulse coefficients

alternately odd and even, these two pairs are as shown in Fig. 4. If

we now allow a to approach the limit zero, a new series of pairs is

obtained of which the first two pairs are shown dotted in Fig. 4 for

the particular choice of integration constants there made. The general

limiting pair is designated as p~ n
, ^_„(g) and it is shown with its n

arbitrary parameters Xi, X2 ,
• • •, X„ as pair (410*). In some ways it

is simpler to derive the limiting pair for negative integral powers of p
from rational functions of p, which may be accomplished as shown by

pair (411*). Special cases are shown by pairs (408*), (409*), (415*),

(416*).

n = 2

n = 1

Fig. 4—Graphs for the family of pairs p~"exp(— ira2/2
), a~1Dg~"exp(— Trg

2
/a2).

with the integration constants chosen so as to make the impulse coefficients alter-

nately odd and even. The heavy curves show the cases a = 1, n = 1,2; the dotted
curves show the limit a —* 0, n = 1,2.

The first of the series ^-i(g) is a unit step at epoch from a constant

value X — \ for all negative epochs to the constant value X + \ for all

positive epochs. The constant X may have any value; this is a singu-

lar case marked by the failure of the general rule that the choice of the

cisoidal coefficient uniquely determines the impulse coefficient. This

means that in any well set problem some other condition determines the

value of the constant X. In some problems, for example, it is necessary

that the epoch coefficient be an odd function, and then X vanishes. In

other problems where either the epoch function must be zero for all

negative epochs or on the other hand the p occurring in the cisoidal

coefficient is actually the limit of p + a as a approaches zero through

positive values, the constant X equals \. This limiting condition may
arise if we assume that resistance may be ignored, as a first approxima-
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tion, in studying actual systems which necessarily involve at least a

small amount of dissipation.

The mates of positive and negative integral powers of p, including

the zero power, cannot be derived directly and definitely from the

Fourier integral (101) without the specification of an additional

passage to a limit. Such pairs therefore differ essentially from the

great body of regular pairs where the choice of one coefficient com-

pletely determines the mate. In order to permanently ear-mark these

limiting pairs, their serial numbers in Table I bear a star. These pairs

may be thought of as lying on the periphery of the great domain which

includes the totality of regular pairs.

Identical Mates and Other Simply Related Mates

Since one of the coefficients of a pair may be assigned quite arbi-

trarily, this choice allows us, if we so elect, to specify some relation

between the two coefficients of a pair. We might specify that a linear

combination \Fj(x) -f- fiGj(x) of the two coefficients of a pair both

taken with the parameter x is to equal an arbitrary function F(x).

The pair (Fj, Gj) is then uniquely determined, unless X + *"m = 0,

being equal to pair (224) after each Fn has been divided by X + i
n
ix.

Again if it is specified that one coefficient is to be the reciprocal of the

other, a possible solution is pair (760).

Fig. 5—Identical coefficient pairs of the form

(1 + x"-/p-)-lK^{2wp>- VTTWV-Ki^TrpS), x = f or g.

The condition that the mates shall be identically the same function

of their parametric variables / and g is of special interest. In addition

to the identical pairs shown on Fig. 2, n = 0, 4, 8, the table contains

a number of identical pairs including (523), (625), (712), (761), (916).
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The identical pair (916) divided by its value at the origin is shown

in Fig. 5 for different real values of its parameter p. For p = + °°

,

the curve is of the exp(— irx
2
) or normal law of error form, and is

identical pair (703). For p = \, the reciprocal hyperbolic cosine

identical pair (625) is shown correctly within the width of the line,

this being apparently a mere coincidence since pair (916) does not

include it as a special case. Finally, for p = 0, the limiting curve

coincides with the horizontal axis taken together with unit length of

the positive vertical axis. This represents pair (523) divided by its

value at the origin, which is infinite. The point to be especially noted

is that the area under every curve of the family illustrated by Fig. 5

is the same and equal to unity. This must hold for the limit p = 0,

when the curve encloses no area within a finite distance of the origin.

The identical pair |/~*|, |g~*| is of great simplicity and it occupies

a central position among algebraic pairs. Starting with the minus

one-half power of the parameters in both coefficients, any increase in

the power of one parameter requires an equal decrease in the power of

the other parameter as is illustrated, for example, by pairs (502*),

(516*), (524).

It is not permissible to specify any relation whatsoever between

the two coefficients of a pair; for example, no pair exists for which one

coefficient is twice the other. As stated above, the only multiples

permissible are the four units I, i, — 1, — i. For each of these four

cases there are an infinite number of solutions. These solutions

satisfy the integral equations given in the foot-note to pair (223).

Practical Applications of Coefficient Pairs

Fourier gave the first comprehensive method of finding the solution

for transients. His method involves three steps: viz.,

I. Spectrum analysis of the cause among all frequencies.

II. Solution for all frequencies.

III. Spectrum synthesis of the effects for all frequencies.

Fourier thus substituted three problems for one. With a table of

Fourier coefficient pairs, these three steps may be made as follows:

I. Find the mate of the cause considered as an impulse coefficient.

II. Multiply this mate by the admittance for the system.

III. Find the mate of this product considered as a cisoidal coefficient.

These three steps define a perfectly definite result, since every arbi-

trarily chosen coefficient has a mate which is unique and determinate,

or may be made so by the specification of some suitable passage to a

limit.

42
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The use of a table of pairs may also be stated in another and some-

what more general way as follows

:

For any system where the principle of superposition holds, any cause

C(t), its effect E(t) and the corresponding admittance Y(f) are con-

nected by a relation which may be written in any one of three ways

which explicitly express each of the three quantities in terms of the

remaining two, as follows:

E(g) = mtY(f)mc(g)j

<w-«[5BP].

Y(f) =
MC{g)

'

where cVHs read "mate of."

The use of coefficient pairs may be most simply illustrated by

reference to Figs. 3 and 4, in connection with the problem of finding

transient currents through a perfect condenser of unit capacity due to

impressed electromotive forces shown by each of the seven curves on

the right considered as functions of the time. Any curve on the right

being the cause, the next curve below it is the effect, considering Fig. 4

to be placed above Fig. 3. In the solution the first step is to find the

mate of the curve on the right. This is the curve on the left. This

mate is then to be multiplied by the admittance of the system which

is p for a unit condenser. Reference to the titles of the figures shows

that this product is given by the next lower curve on the left. To find

the mate of this last curve is the third step in the solution and for this

it is merely necessary to go to the curve on the right. The three steps

then take us from any curve on the right to the next curve below it.

Figs. 3 and 4, taken together, are a section of an infinite sequence of

pairs which illustrate an infinite number of possible transients in a

perfect condenser of unit capacity.

If, on the other hand, the system consisted of a perfect reactance

coil of unit inductance and the impressed cause was again shown by

any curve on the right, the effect would be shown by the next higher

curve, assuming that the initial current at the beginning of time was

that shown by the extreme left of the upper curve. Thus, when the

cause is oscillating, there is one less half oscillation in the effect than in

the cause. This is for an inductance. For a condenser, conditions

are reversed; the effect has one more half oscillation than the cause.

The scales of Figs. 3 and 4 may be changed to correspond to any

value of a, the parameter which appears in the coefficients of the pairs.
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At the limit a = 0, the cause and effect would be the singular ^„
or ^_n functions.

The curves on the right for n = of Fig. 3 and n = 1 of Fig. 4 show
that at the limit a= a unit step in the voltage produces a unit impulse

in the current through a unit condenser; on the other hand, a unit im-

pulse applied to a unit inductance gives a current which is a unit step.

The curves of Fig. 2 may be used to furnish another illustration of

the use of coefficient pairs, in connection with the problem of finding

networks in which assigned transient currents will be produced by
assigned impressed electromotive forces. Any curve n being the

assumed cause and the next curve («'+ 1) the assumed effect, the

required admittance is 0n+i(/)/[*0n(/)]. This admittance is pre-

sented by a ladder network of (w + 1) elements: perfect inductance

coils in the series arms, perfect condensers in the shunt arms, the ladder

starting with a shunt condenser, the values of the shunt capacities

being equal to 2, 2n(n - t)-\ 2n(n - l)-x (w - 2)(» — 3)
-1

, etc.,

and the values of the series inductances being equal to (2rn)-1
,

(2t«)
_1

(w — \){n — 2)
_1

, etc. In verifying the solution of this prob-

lem, it is to be noticed that the mates of the curves n and (n + 1),

regarded as impulse coefficients, are the same curves multiplied by i~n

and i
_(n+1)

; the quotient of the latter mate divided by the former

mate is the admittance of the network as given above.

On the other hand, any curve {n -f- 1) being the cause, the curve n

is the effect in the reciprocally related ladder network of {n + 1)

elements, starting with a series reactance coil, the values of the series

inductances being equal to 2, 2n{n — 1)
_1

, 2n{n — 1)
-1

(» — 2)(» — 3)
-1

,

etc., and the values of the shunt capacities being equal to (2wn)~l
,

(2ttw)-1 (w - 1)(« - 2)- 1

, etc.

Practical Applications of Coefficient Pairs in Table II.

In general, each of the three subsidiary problems employed by
Fourier is unsolvable in closed form. In a strictly limited number of

cases, however, all three problems have been solved and the final

transient solution obtained. These solutions should be cherished and
collected for ready reference. It is a needless waste of time to repeat

the analytical work each time a solution is required. Except for a

few special cases lying outside of the scope of the table, all practical

applications of closed form coefficient pairs which were found in a

preliminary search are included in the transient solutions of Table II.

As it stands, the table is far from a complete list of closed form solu-

tions, but it contains many important solutions and serves to illustrate

the use of Table I. Table II contains 39 admittances, with references

to 39 systems which serve to illustrate the occurrence of these admit-



658 BELL SYSTEM TECHNICAL JOURNAL

tances. In the third, fourth and fifth columns, 85 transient solutions

are given of which 39 are for the unit impulse, 30 for the unit step, and

16 for the suddenly applied cisoid.

The causes producing the transients in Table II are but three in

number: the unit impulse, the unit step, and the suddenly applied

cisoid; and the mates for these causes are unity, p~x and (p — po)'
1

as is shown by pairs (403*), (415*) and (440*). Multiplying these

three mates by the admittances and taking the mates of the products,

we have the effects, as is stated in the headings of the last three columns

of the table.

To illustrate in detail the steps involved in finding a transient effect

with the aid of Table I, consider system No. 14 of Table II with the

cause equal to the unit step ^_i(/), X = *. The mate of the unit

step is p'1 by pair (415*). Multiplying this by Y(J) as given in the

second column of Table II, we have up-^{\ + Ap\\)~x for the cisoidal

coefficient. By pair (551) the mate of this is wVx exp(Xg) erfc VXg,

< g. Substituting for g the actual variable /, we have the transient

solution as given in the fourth column and fourteenth row of Table II.

This simple example fully illustrates the three essential steps in

finding any transient effect when the admittance and pairs are known.

In this example the effect was considered to be the unknown. If

either the cause or the admittance were the unknown, the same pairs

would be involved but the two coefficients in a pair would be used in

the reversed sequence in all but one instance.

There are still 32 squares of Table II left blank. It would be a

simple matter to place series solutions or integral solutions in each of

these squares. Thus if the impulse transient of column 3 is known,

the other two transients are given at once in integral form by pairs

(210) and (219); if the unit step transient of column 4 is known, the

suddenly applied cisoidal transient is written immediately in integral

form by the use of pair (220). The real problem is, however, either to

find closed form solutions in terms of known functions or to show that

this is impossible. When the failure of known functions has been

established, we should next consider the choice of new functions so

defined as to throw as much light as possible on the new solutions.

Table II may be regarded as another table of coefficient pairs.

Column 2 contains cisoidal coefficients; column 3, the mates of these

coefficients; column 4, the mates of these coefficients when multiplied

by p~x
\ and column 5, the mates of these coefficients when multiplied

by (p — po)'
1
- The corresponding pair in Table I is referred to in

the lower left-hand corner of each square by its serial number. In a

few cases, two or three pairs are referred to and there it is necessary
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to add the Table I pairs together or, in the case of systems 37-39, to

apply the two pairs in sequence. In Table II, the customary physical

notation is adhered to because it is often of long standing and this

necessitates some change in notation when comparing pairs in the

two tables.

Summary and Conclusions

Many practical applications of the Fourier integral have been

simplified by the compilation of Tables I and II, which give coefficient

pairs, admittances and transient solutions.

Minor changes in nomenclature and point of view have been intro-

duced, all with the idea of simplifying the practical application of the

Fourier integral, in the following ways:

(1) Using the cisoidal oscillation and the unit impulse side by side

as alternative elementary expansion functions.

(2) Focusing attention upon coefficient pairs for these two ele-

mentary functions, both coefficients of a pair representing the resolu-

tion of the same arbitrary function.

(3) Using the frequency and epoch as the parametric variables, in

place of the customary radian frequency and independent time

variable.

(4) Employing as a coefficient any real or complex arbitrary func-

tion which may be practically useful by regarding it, where necessary,

as a limit approached through coefficients which form regular pairs.

(5) Introducing the $$ n (g) functions having an essential oscillating

singularity at the origin which mate with p
n

, the positive integral

powers of p.

(6) Using a notation which greatly reduces the number of occasions

for employing the integral symbol in applications of the Fourier

theorem.

Having established the inclusiveness and practical utility of the

proposed coefficient pair method of applying the Fourier integral, we

are now planning to critically verify the tables and make them as

complete as is feasible. It is proposed to include eventually such

references to the literature as may add to the interest of the tables.

The contributions of integral equations and of the operational method

to the present subject will also be incorporated in the tables. The
preparation of similar tables for other elementary expansion functions,

such as Bessel functions, is also a possibility. A comprehensive table

might be made which would include in parallel columns the coefficient

functions for a large number of elementary expansion functions, thus

giving at once many alternative ways of representing particular time
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functions. This would make it possible to shift without trouble

from any one expansion to any other expansion of the tabulation.

I am under great obligations to my colleagues for their contributions

towards the preparation of this paper. I shall be grateful to any person

who will call my attention to errors or omissions in any part of this

paper.6

Notation

The following notation is employed in Table I; also in Table II,

except as specifically restricted.

a, b, c = positive reals.

br x = branch x. For each multiple-valued function, branches

are designated in one or more different ways. When
no branch designation is given, branch zero is to be

understood.

C{z) = fQ
cos^TZ^dz = - C(-z). C(± oo ) = ± i.

cis(z) = cos z -\- i sin z = exp (iz) = e" = cisoidal oscillation if

z = 2tt//.

D,(z) = parabolic cylinder function of order v.

Dn (z) = exp(-As2)iJ„(z). D^(z)= {l^-^K^z^).

D-i(z) = (|x)i expQs2
) erfc(2-*2).

erf(z) = 4= f*exp(- #)dz = - erf(- z). erf(± *>) = ± 1.

V;r Jo

2 C"
erfc(z) = -= 1 exp(— z2)dz = 1 - erf(z).

f = frequency; parameter for the cisoidal oscillation.

— co </ < oo.

F{f) = coefficient for cisoidal oscillation, parameter /.

Fn(f) = coefficient of an i"-multiple pair (Fn(J), inFn(g)) in

pairs (223)-(225).

6 1 am already much indebted to M. Paul Levy for a number of suggestions

including the expression of the general identical pair as the sum of any pair having

even coefficients and its transposed pair.
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g = epoch
;
parameter for the unit impulse. — °o < g < <»

.

go<g<gi restricts the given coefficient to the indicated limits;

outside these limits the coefficient is zero.

G(g) = coefficient for unit impulse, parameter g.

aw , ..- «fe^l> *~ + «« - !>»

-

2>»

-

3)^—
= Hermite polynomial of order ».

2
H,(1) (z) = - ^-p"1JTr(— is) = Bessel function of the third kind.

//„< 2) (s) = - i
y+lKy (iz) = Bessel function of the third kind.

7T

T{z) = imaginary part of z. z= R(z) + il(z).

Iv (z) = i-"Jy {iz).

j, k, I = integers greater than zero.

Jv (z) = i'Iv{— iz) = Bessel function of the first kind.

kv(z) = |«^«fl;»(«).

m, n = positive integers, including zero.

SU( )
= mate of ( ).

p = ilirf, the imaginary radian frequency.

r, s = reals, positive or zero.

R(z) = real part of s. z = R(z) + il(z).

S(z) = JVin(irtfyfr = - 5(- 2). 5(± =o) = ± |.

#,(*) = lim aDx
v exp(- 7ra2x2

) = »th singularity function.
a—>-oo

#-(*) = ( X! ±
2(>> 1 1} , )

-X-1 + X 2.V-
2 + • + X„, < ± *,

< ».

/ = time. — <» < / < co

.

v, w = integers, positive, negative or zero.

x, y = reals, unrestricted.

Y = admittance of system for cisoidal oscillation.

YP (z) = J*[E,W («) - fl»(1)(z)] = Bessel function of the second

kind.
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z = complex quantity, unrestricted.

2 = conjugate of z.

z", br x = exp[p.R (log z) + in arg z~\, where (2x — l)r < arg z

^ (2x + 1)tt.

m J**gpt
br(tf — v). Branches (x + v), v = 0, ± 1,

±2, • • • form a complete set and without repetition

unless (i is a rational real.

«, 0, 7, 5 = complex quantities, real parts greater than zero.

6 = principal argument. — w < 8 ^ r.

X, n, v = complex quantities, unrestricted.

p, «7, t = complex quantities, real parts not less than zero.

<t>n(x) = exp(irx2)Dx
n exp(— 2ttx2)

= (— 2ir^) nDn(2Tr^x) where Dn is the parabolic cylinder

function of order n

= (- 2ir*)
B exp(— irx

i)Hn{2^x) where 7I„ is the Hermite

polynomial of order n.

\{/(z) = r'(s)/r(s) = logarithmic derivate of the gamma func-

tion. — ^-(1) = Euler's constant = 0.5772- • •.

* marks a pair as being the limit approached by
regular pairs.

Not Restricted

Real Part

S >

Integers

Reals
Complex

v, w
f, g, U x, y
z, X, n, v

m, n
r, s

p, (X, T

j, k, I

a, b, c

a, /3, 7, c5
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TABLE I

Paired Coefficients for the Cisoidal Oscillation and the Unit Impulse l

Part i. General Processes for Deriving the Mate

Pair

Coefficient F(f) for the

Cisoidal Oscillation

Coefficient G(g) for the

Unit Impulse

No.
cis(27r/0 = exp(pt) & (t-g)= \im-e-^-^'a2

a-t-0 &

101. F r F(f)cis(2-Jrfg)df
*J— CO

102. C G(g)c\s{- 2-xfg)dg
t/— 00

G

103. F D r F(f)c\S (2Tfg)p-idf
%J— co

104.* MP- Po) +MP - PoY + •,
lim by 401*

cis (27r/og)[X 1gJl(g) -f X2g> 2 (g) + • • •]

105.* Xi -, r ~r X2 ~, rr "r * " *
1

(P ~ Po) (P - PoY
lim by 408*

/ g g
2

cis (27r/ g) 1 Xi + X 2 T-, + X3 ji

+ X4
f"!
+••")» 0< 2

106.* \ip + UP2 + UP3 + •••,

lim by 401*
\i&i(g) + X 2g>2 (g) + \3&3 (g) + • • •

107.*

P P2 P
3

lim by 408*

Xi + X 2p + X 3 |1
+ X4 ^+ •••, 0<g

< a < 1, lim by 516*

1
rx 1 )

i
1108.* iW-|_ X

° '

Xl
» f

, <g
a(a +1)

1 The pair for the oscillation cis (— 2irft) and the unit impulse is F(f), G{— g) which differs from the
tabulated pair only in the sign of the epoch; similarly, for the oscillation cos (2*ft) or sin (2irft) the only
change is the substitution for G(g) of the even part of G(g) or of the odd part of — iG(g), the pairs being
F(f), hLG(g) + G{— g)], or F(f), — ih[G{g) — G(— g)], respectively. Every pair in Table I may be
thrown into the form of an evaluated Fourier integral by equating the pair after writing either

XQO
.

/'oo

df cis (2irfg) before the coefficient F(J) or / dg cis (— lirfg) before the coefficient G(g). Every
-00 •/—OB

pair in Table I may also be regarded as an operational expression F(p/i2ir) of the operator p = i2irf = d/dg
with G(g) its explicit expression in g.

* A star marks a pair as being the limit approached by regular pairs.
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TABLE I (Continued)

Pair

No.

Coefficient F(f) for the

Cisoidal Oscillation

Coefficient G(g) for the

Unit Impulse

109.*

110.*

111.*

ja (Xo + \ip + X2£
2 + •••).

< a < 1, limby 501*

i(x. + x 1
i + x!

i + x,i + ...),

limby 518*

-4= (Xo + \ip + A2£2 + X3£
3 +•").

<p
lim by 502 *

r^[x«- Xl(1 - a)
I

-f-X 2(l-a)(2-a) j+
---J,

0<g

Vgl ° 1
+Xl

1-3

+ x
(2g)3

I+ X,
1-3.S

+ ]• <g

If 1 1-
^[_x.-Ai^ + x.

(2j

- X

2g"rA2 (2g)
2

1-3-5
3 '

(2,)'
--]• ° <g

112. Xo*o(/) + Xi$i(f) + X2 2 (/) + ' '

'

Xo^o(g) + tki+i(g) + *
2X2«^2(g) + • •

•

Part 2. Elementary Combinations and Transformations

201.

202

.

2

203.

204.

FXF2

f F1(-x)F2 (f + x)dx
J— CO

\F

Gi±G»

/»O0

i/_eo

G1G2

XG

2 From (202) or (203), with g (or/) = 0, and (215) and (217) follow the important identities for the

integrated product of two pairs of coefficients and for the integrated squared moduli of a pair of coefficients:

f F1(f)F2(±f)df= r Gi(g)G,(=F g)dg,

r WW- r wig,J— 00 *» — 00

f°° Fl(x)G1(x)dx - f* Gi(x)Ft(.x)dx.
J -co J -co

The symmetry of these identities is to be noted; this would not be the case if the radian frequency

2*/ were employed in place of the cyclic frequency f.

* A star marks a pair as being the limit approached by regular pairs.
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TABLE I (Continued)

Pair

No.
Coefficient F(J) for the

Cisoidal Oscillation

Coefficient G(g) for the

Unit Impulse

205. F(af) H 9
-)

a \a J

206. F(f — fa) = Fl —~ Po\
cis(2irf g)G = e**<>G

G(g ~ go)
207.

1 \J J "J ' 1

cis(- 2Tfg )F = e~

'2t J

POf>F

208. PF D„G

209. DPF = ^D,F -
gG

210. If
p f Gdg = D -iG

211. j Fdp = i2ir f Fdf = Dp
~lF - l

-G
g

212. DXF DXG

213. f Fd\ = Dx^F f Gd\ = Dyr lG

214. F(-f) G(-g)

215. n±n G(=Fg)

216. F(f) ± F(f) G(g) ± G(- g)

217. G(±f) n=Fg)

218. G(± ip)
2tt \ 2tt J

219.
F(f)

ep o I e-Po"G(g)dg
J-00P-Po

220.
P F(f) G(g) + p e™ f" e-™>G(g)dg

J-toP - Po
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TABLE I (Continued)

Pair

No.

221.

222.

223.3

224.

225.

Coefficient F(f) for the

Cisoidal Oscillation

e^Df^e^F) = (=F 2tt/ + D,)*F

Fn(f), n= 0, 1, 2, •••, 11

where Fn (f) = i[F(/) + i*
nF( - f)

Fn+4 = R{Fn), Fn+s = I(Fn),

n = 0, 1, 2, 3

W) 4- W) + W) + W)
where i7,, is as for 223.

ft(/) + W) + W) + W)
+ *TW) + F10(/) + W) + Fu(/)]
where F„ is as for 223.

Coefficient G(g) for the

Unit Impulse

- g*W§*(g-*G) = - d + sAr^C

i*'e**"D v
(e'

,w*G) = i*"(=F 27rg + £>„)"£

Fo(g) + iFx (g) - Ft (g) - iFz(g)

F*(g) - F6(g) - F9(g) + Fn(g)

+ t[F8 (g) - Fl0(g) + ftfe) - F,(g)].

Part j. Key Pairs

301.

302.

303.

304.

sec £;
T7(p + X) for 0, if 1

|_- 1*22(1/7) < 22(A) < i»22(l/7)J

[7(£ + p) for £, and v for a with1

(p + 0) for £ J

[7(/> + 0) f°r £> and "^ for ° witn~|

fo + /3) for p J

exp{W)D-a(p)i

[V7(P + p) for Pi

\ sech(£*g)

(2g)-exp(-^) f

Ja-i(2a-Ji)Ja-i(2Jg),

<g

<g

jT^r-'expl-k2
), <g

The coefficients of the ^''-multiple pairs satisfy the following integral equations:

Fn(f) = (- D* 2 f" Fn(g)cos(2^g)dg, n - 0, 2, 4, 6, 8, 10

W) = (- l)**"1^/" i?„(g)sin(27r/g)Jg, « = 1, 3, 5, 7, 9, 11
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TABLE I (Continued)

Pair

No.
Coefficient F(f) for the

Cisoidal Oscillation

Coefficient G(g) for the

Unit Impulse

305.

306.

p-exp(±)z>.
(^) ;

[y(p + p) for p~\

l-(2g)i«-»exp(- V2i),
1 CaJ

<g

< R(a) < £;

(p + p) for p, and 5 for b without the

restriction on a with (p + /3) for p,

|_if - £(/3) < 22(iS) < i?(/3)

"-/ g2—1 \ia-i

2 V &2 /«-i(W- 1), Kg

307.

Up + X) for £|

1/1- jr
2 Va_i

V27T V **
/«-i(«Vl - g

2
),

- 1 <g < 1

Part 4. Rational Algebraic Functions of f.

401.* p" = lim p ne-*a2f2

a-*0
£„(g) = lim^D^e—- 2"2

402.* -_«_«*(- «-'(» + 1)!(1 - e-* ")

&n(g)P lim Zj ,,,
fe + 1)! an+1p

403.* 1 = lim «-«»-*! •^o(g), unit impulse at g =

404.* p = lim per**1

0->O
§£>i(g), negative unit doublet at g=o

405.* \p-
n

\
= lim DferM

0—0
(- l)"^2n(g)

406.* \p
n- n+l

\
= - lim Dp- n

0—0
+lg-/S|p|

(- l) n+l(2n+ 1)!

Tg2n+2

407.* \P\> lim by 406*
1

^g2

408.* p-» = lim (p + /3)-"
f

< «
g
n-l

<g(»-!)!*

409.* />-» = lim (p - 0)—,
0-.-O

< »
- g

n_1

g <(n-1)!'

A star marks a pair as being the limit approached by regular pairs.
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TABLE I (Continued)

Pair

No.

410/

411.

'

415/

416.
:

421.'

431.

432.

433.

Coefficient F(f) for the

Cisoidal Oscillation

-no—nain
P~

n = lim p
a-+0

p~ n = lim ^—

^

< n

+

(P+P) n

A/ \k(n-k)\ Mn-k)\ \1

»ttW+|8)"-*+1 (p-P) n-k+l )]'

< n

- = lim ( h :£—;—
- I0-»o\£-0 p+P/

— = lim t-= -

£ + X 2/3/z

(P+P) 2 P
2 ~P

F(J) = lim Fi(f), where .Fis any proper

rational fraction in p with n distinct

poles, the degree of pole z,- being »y.

All pure imaginary poles in F are the

limits of corresponding poles in F\ which
have assigned real parts ± a.

1

(P + P)
n

1

(P-P) n '

1

(P
2 ~ FY

'

< n

< n

< n

Coefficient G(g) for the

Unit Impulse

£_n(g) = lim ±D -»e-'a-"*

+ X 2
g"-2 + x3

g"-3 + • • •

+ Xn ,
< db g

>-n(g)

9-iig) = X ± h, < ± g, unit step at

g=0

&-*(g) = h\g\ +Xg + /x

< ±f, ±i?(z,) <0,

where X'*
(fe _i)!(W/ _fe).

and the upper or lower «signs for each

term are employed according as the real

part of Zj (either actual or vestigial) is

less than or greater than zero.

1

(»-l)!

- 1

e-fi9g»-i
t

(«-D!
} ffffn-l

<g

g <o

_9Mla»-*(»+*-2)lf
(n-l)\ £l(fe-l)!(n-fe)!(2)8)-+*-»

_ (- i)»|g^M^—>Qg|g|)

(» - l)!7r 4
(2^)

n_4

* A star marks a pair as being the limit approached by regular pairs.
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TABLE I (Continued)

Pair

No.
Coefficient F(f) for the

Cisoidal Oscillation

Coefficien

Unit
t G(g) for the

Impulse

438.
1

e~00
,

P + P
< g

439.
1 — tP',P-P g < o

440.*
1

limby415* Cis {2irfQg)S>_ l (g)P-Po'

441.* P
lim by 403* ftote) - fie-*',

p + r <g

442.
i

if",
(p + py <g

443.
i

- get",
(P - PY g < o

444.
1

IPP
2 - 2

445.
P ± le"»

P*--P 0< ±g

446.*
a

lim by 415* sin ag S>-i(g)
p* + a2 '

447.*
P

lim by 415* cos ag £§>_i(g)
P

2 + a*'

448.
1

g-fio _ e
-o*

<g
(p + cc){p + (i) a - '

449.
p ae-00 - $e-Bo

<g
(P + a)(P + P) a - p

450.
1

hi^9
, <g

(P + PY

451.
1

- iff, g < o
(P~PY

A star marks a pair as being the limit approached by regular pairs.
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TABLE I (Continued)

Pair

No.

Coefficient F(J) for the

Cisoidal Oscillation

Coefficient G(g) for the

Unit Impulse

452.

453.

454.

455.*

456.

457.

458.

459.

1 (7 - fte- ' + (a - y)£-»+ (0 - a)^»

(*> + «)(/> + #(/> + 7)

P

(a - 0)(/3 - 7) (7 - «)

< g

«G8 - 7>
_a

' + 0(7 - «y*
+ 7 (« - 0)e-yo

(p + a)(p + fi)(p + 7)

or/3 1

(a - /3)(/3 - 7) (7 - «)

<g

*T" - of* .

p(p + a)(p + P) p

a
lim bv 415*

a-/3 ' ^
8

2 sin2 (iag)S>-i(g)

- sin ag e~bo , < g
a

sin ag e 6ff
, g <

a

( cos ag sin ag
J
e~ba , < g

— ( cos ag + -sin ag
J
e
6
", g <

1

(p + b + ia)(p + b - ia)

1

(p — b + ia) {p — b — ia)

(£ + b + «'a) + b - ia)

P

(p - b + ia)(p - b - ia)

Pari 5. Irrational Algebraic Functions off.

501.*

502.*

503.*

504.*

An— = iim pn-*e-PiP \

)
< R(a) < 1

0—0

pn-h = \[m pn-h e~P\p\
}

P-+

P\

< «

lim by 502*

lim by 502*

1

r(a - n)
s '

(- l)"l-3-5 ••• (2« - 1)

<g

i^l(W (2g)
-„-}

<g

<g

<g

* A star marks a pair as being the limit approached by regular pairs.
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TABLE I (Continued)

Pair

No.
Coefficient F(f) for the

Cisoidal Oscillation

Coefficient G(g)

Unit Impu
for the

se

505.* \n lim by 503* irl^l

506.* (p + w, lim by 820 - K-^r1
. <g

516.* p~a = lim
0—0

(P + /3)-a
,

br
1 *-

r(«) r '

br 0, < g

517.* p~a = lim (P - P)~
a

,
br (- |) r(«) r '

br 0, g <

518.* p-n-i -
\[m (p _|_ j3)-»-i

, br 0, < n
CM"1

/o.N.
i
br 0, < g1-3-5 ••• (2» - 1)^

519.* p-n-\ = \[m (p _ 0)-n-J br |, < n
1-3-5 ••• (2« - ir g br 0, g <

520.* P-K lim by 518* 2(e/T)», <g

521. p-a
,

< R(a) < 1
1

r-
r(«)

r
'

<g

522. p-i fa)-*, <g

523. I/-M Ir»l

524. (p + (3)-
a

,
br v

r(«)
e e r

'

br w, < g

525. (P - /3)-, br (v - |)
p—i2xa (v+w) ffigM— 1 br w, g <

526. (p + 0)-», brO e-0'Org)-*, br 0, < g

527. (P - /3)- 5
.

br£ ^'fa)"*, br 0, g <

528. (# - 0)-*. br -^(Trg)-KerfA^-l
b
i).

r 0, < ± g

529. (p + 0)-», brO 2<r '(g/x)*, br 0, < g

530. (P + /3)
1-

~{P + 7)
1 " J*-2ftT-B° S-~< "), <g

Y{a-\) g (t

A
43

star marks a pair as being the limit approached by regular pairs.
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TABLE I (Continued)

Pair

No.
Coefficient F(f) for the

Cisoidal Oscillation

Coefficient G(g) for the

Unit Impulse

541.

542.

543.

544.*

<p

P + 1

1

_1
1 + V/3p

P

1 + <&P

545.
(/> + t)(i + <m

546.

547.

548.

549.

550.*

(P + 7)^P + P

V/3 1

p<p + $ P

P + 7

4p

i + V/sp

-1=+ V- ye-yB ed V- 7g, 0<
VTTg

—= e
y0 erf V — jg,

V- 7

--exp|erfc J|,
Vtt/3? /3 |S

U0(g)+ JLZ£
2/?gVffj8g

<g

0<g

- Te-7
"

1+07

-^ exp^ erfc -/&, 0<

(1 - V-/3T erf V- 7g)

1 exp (g/0)

VTftr 0(1 + 187)

erfc^
<g

1
^-yg

erf V(0 - 7 )g, <
V/8- 7

- erfc V/3g, <g

L= e~&0 - erfc V^g, < g
V7T/3g

_L*-» + V/S-T^'erf V(0 - 7)g,

< g

-p ^>o(g) - —7=
V/3 /3V7rg

*= exp | erfc JL 0<g
rt p ' ^f

A star marks a pair as being the limit approached by regular pairs.
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TABLE I (Continued)

Pair

No.
Coefficient F(f) for the

Cisoidal Oscillation

Coefficient G(g) for the

Unit Impulse

551.

552.

V/»(l + Vj3/»)

iP + 7)(1 + <M

553.*

554."

555.

556."

557.

558.

559.*

560.

571.

V p

1 lp + a

1

V(/> + «)(/> + #

Vp2 + a2

1

V/>2 + a2

1

Vj8» _ p.

V/> + a

V/> + V/> + a

V/> + a

/>(V/> + V^> + a) P

(/>
2 + b*)-

a
,

i exp
i

erfc ^'

__^_ (erf V- 7g -V-^)

+ -gPMJ erfcJj, 0<g

»o(g)+^-JaT/i(W) + /o(W)],

o <g

e-^[ag/i(§ag) + (1 + «g)/ (§«g)],

<g

e-iWlo\S(a - /3)g],

»i(g) +-/i(og),
g

Jo(ag),

-KM\g\)

<g

< g

<g

i*o(g)+,L «-»afJi(§a*),
2g

0<g

- K» Bf
[A(i«f) + /o(J«g)], o < g

< R{a) < 1
V^r / g

y-s

r(a)W •

J«-l(bg), <g

* A star marks a pair as being the limit approached by regular pairs.
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TABLE I (Continued)

Pair

No.

Coefficient F(f) for the

Cisoidal Oscillation

Coefficient G(g) for the

Unit Impulse

572. UP + 0)
2 + r*-]~

a ^(fJ~W_iW , 0< g

573.
ylP i fi

W +'+W-
+ i«+i(&H)l, o < g

574.
(^p + p+ v/o~

2*

p-*-&im(\pg), o < g
Mp + P)

575.
[V(/> + p)

2 + a2 + (P + P)V+1
ara+1e- f"Ja dag), < g

<{P + P)
2 + a2

np~M
576. [V(£ + p)

2 + a2 + (p + P)T
a

-Za-Ja {ag) t 0<g
s

Part 6. Exponential and Trigonometric Functions offorf-1 .

601.* e-rp &o(g - r)

602.*
e
-rp

P
£>-i(g - r)

603. - (1 - e-a»)
P

1, < g < a

604.
e-rP

r <gP+P

611.
a 1 Itanh^Ti

2a
0< ±g

sin ap p

612.* tan ap
- 1

2a sinh^
2a

613.* a ctn ap
P

ictnh^Ti
2a

0< ±g

A star marks a pair as being the limit approached by regular pairs.
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TABLE I (Continued)

Pair

No.
Coefficient F(f) for the

Cisoidal Oscillation

Coefficient 67(g) for the

Unit Impulse

614.

615.

sin ap

sin fip

616.

sin ap

cos fip

617.

cos ap

a sin ftp 1

618.

619.*

620.

621.

622.

623.

fip sin ap p

cos fip 1

p cos ap p

cosh(ap)

cosh (ap) 1

cosh (ap)

R(fi) < R(a)

4a2 cosh 2

2̂a

1 . Tcfi
-—sin—
2a a

R(fi) < R(a)

, 7Tg . 7T/3

cosh —- + cos—

1 irfi , xg
- cos— cosh—
a 2a 2a

, 7Tg . 7T/3

cosh— + cos—

tanh^
R(fi) < R(a) —tan-1 -

irfi irfi 2

2a 1 0<±g
ctn—

la

cos-

i?(/3) < R(a) tan" 1

7T

sinh-^

§[^o(g + a) + ^ (g - a)]

Ti < ± g < a

1

(£ — £o)cosh(a£ ) p - po

sinh(ap)

\ cis(27r/ g)[tanh(a£o) =F 1],

0< ±g< a

s'mh(ap) 1

a£>
2 £ 2a

=F*.

— a < g < a

0< ±g < a

* A star marks a pair as being the limit approached by regular pairs.
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TABLE I (Continued)

Pair

No.

Coefficient F(f) for the

Cisoidal Oscillation

Coefficient G(g)

Unit Impul
for the

se

6?4 p sinh(ap) l i{cis(27r/og)[ctnh(a^o)=F lj— cs<

<
:h(a/>o)},

PiP — po)s\nh(apo) p -/>o ±g<«
625. sech 7r/ sech 7rg

631. pt-\e-fi\p\ -g + tf)-]

632. g-m 1

it /3
2 + g

2

633.
P P IT g

634.
to + v^ + ^
^ 2t(/3« + s»)

\p\e-M

sin (a
| p |

)

/S
2 — g

2

635. xO? + g
2
)
2

645.*
x(a> - g*)

651.
1 P

—Bg
e-= cosh (2 Vpg),
VTTg

<g
<P + P

P
P + ?

652.*
1 1

Tp
exp

*P
—= cosh VI.
VTTg

<g

653.
p

—00
^— sinh (2 Vpg),
•VTrp

<g
(p + p) 'w

p + p

654.* exp(-J) ^ (g)--^/1 (2Vg),
"vg

<g

655.
i
expH) /o(2Vg), <g

656.*rxpH) Vg /i(2Vg), <g

A star marks a pair as being the limit approached by regular pairs.
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TABLE I (Continued)

Part /. Exponential and Trigonometric Functions of p.

Pair

No.
Coefficient F(f) for the

Cisoidal Oscillation

Coefficient G(g) for the

Unit Impulse

701. e"P\ < M c-\oVd

2-yJirp

702. 4> n (J)
= c*r-D

s "c-
n
-*r- *"0n(g)

703. Ml) = e~^ = e-"\

X = /•* ir in 703- 711

0o(g) = <r*«'

704. 0i(/) - - «*-(4r)»* *'0i(g)

705. *«(/) = ^ ll! (47r)(x2 - 1) - 02(g)

706. *.(/) = - r»*(4»)i(rf - 3.x) - *fe(g)

707. MI) = r**QrY& - 6.v
2 + 3) 04(g)

708. 0,(/) = -r*+<MH<# - 10.x3 + 15a ) *U£i

709. US) = r**<W& ~ 15.x
1 + 45.v2 - 15) - 06(g)

710. W) = - r**(MK* - 21r'

+ 105*8 - 105*)

- i<fo(g)

711. US) = r*+(M*& -
+ 210.x

28.t
6

- 420.V2 + 105)

0s(g)

712. e-*/*(4irP - 3)
2 e-'""'(4rg2 - 3)

2

Z) "c
-' "2 '*

713.
V/3~'

*
i/RV2J8)«

X g-^'fyn ( -4=
)

714. g-M* Lg-irMtl

715. pe-w

716. p*e
-*B/i 4^-^(2^-/3)
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TABLE I (Continued)

Pair

No.
Coefficient F(f) tor the

Cisoidal Oscillation

Coefficient G(g) for the

Unit Impulse

717.

718.

729.

751.

752.

p3e-*f>/2

ptg-*0p

719. png-lw/*

720. «-*/•

721. pe-l*f*

722. pi
e-l*f*

723. ps
e-w

724. p4e-l*P

725.* k e-*W
P

726.*
P*

6

727. - exp (ap2
)

-

p

_ 1

p

728.
1

Ya(
1

P- Po

exp (Pp2 + op),

P - po

0<Ip!

sin (ap2
)

cos (ap2
)

Pip
*

4tt2

e-'"
5

^(47rV - 127r0g2 + 3/3
2
)

V2D "e-2"'2 = ^e-'o'cpM

fie-2*"2

- 47rgV2>2 'r <'
2

47r\'2e-2"'5

(47rg2 - 1)

- 167r2gV2e-2'r ''
2
(47rg2 - 3)

lWJle-^^ilbTrY - 247rg2 + 3)

&-i(g) + h erf (gViyjS) =F h < ± g

S>-2 (g) + k erf(gVw5)

T | erfc
2V«

| cis (27r/og) (

1

2-v/ttp

= exp

erft±|2& T i

2V«

< ±g

0<±g

)
0<±g

[-***]

2V^
Sm

\4a 4/

2V;ra \4fl 4/

* A star marks a pair as being the limit approached by regular pairs.
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TABLE I (Continued)

Pair

No.
Coefficient F(f) for the

Cisoidal Oscillation

Coefficient G(g) for the

Unit Impulse

753.

754.

755.

sin (ap2
)

cos (ap2
) _ 1

~P P

cos (ap2
) 1

(P — pa) cos (apo2
) p - p

756.

757.

758.

759.

760.

761.

762.

sin (ap2
)

sin (ap2
) a

P
A

sin (ap2
-f X)

cos (ap2 + X)

cis [± ttCP - I)]

cos [>CP - 1)]

sin [>(/ - I)]

\[
S
\^ba)

C
(vfe)]

IW*) +c(*)^]-
0< ±

V 2-V— «o

cis (2tt/ ^) r .. ,. / g
r-f- exp (*a/> 2

) erf -2=
4cos(a/>o2

)|_ \2Aia

+ po-ym
J
+ exp ( — iapQ2

) erf f

+ po-j^m
J
T 2 cos (ap 2

) ,

l[MM*)
+(-JM*)
+s \^

sin (£+i) Ta ]' 0<±g

2Vjro \4o 4/

4=sin(f +X+5)
2V7TO \4a 4/

cis :=f t(S
! - 1)]

cos [r(j2 - J)]

- sin [ir(g2 - I)]
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TABLE I (Continued)

Part S. Olhcr Elementary Transcendental Functions off.

Pair

No.

801.

802.

803.

804.*

exp (— aVp)

p exp (— a^p)

-[1 -exp(-aV/0]

805.

806.

807.

808/

809.

Coefficient F(f) for the

Cisoidal Oscillation

;[1 -exp(-aV^)]+^;
P'

2

1 — exp (— a^p)

2p

p(p + 7)

V/> exp (— aVp)

-r= exp (- aV/>)

r exp(-aV/>) + -

exp (— aVp)

i +v#>

Coefficient G(g) for the

Unit Impulse

« exp (-£Y o< g
2gV*"g \ 4g/

\2g /4g2 Vn' V 4g/

2Vg

<g

<g

V 2/ 2Vg

+a
\/!

exp (-^)' 0<g

^[exp(-«V^)erfc(^
i

V - 7g ) + exp (aV - 7) erfc ( ^p

7
<g

(£- A -1= expf-fV 0<g
\2g /2gV7rg \ 4g/

1 / a2 \ 1 aV/3 + g= exp (
- —

J
- - exp

V

Xerfc ^+?I f <g
2V/3g

* A star marks a pair as being the limit approached by regular pairs.
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TABLE I (Continued)

Pair Coefficient F(f) for the

No. Cisoidal Oscillation

Coefficient G(g) for the

Unit Impulse

110.

p exp (— a^lp)

1 + v^

811.

812.

exp (— a\ p) 1

p{\ + <Jp) P

exp (— aV p)

(P + 7)(1 + V/S?)

813.
p exp (— ay p)

(p + yKl + Jpp)

a"-p - 2(/3 + aV0)g + 4g2

(-3exp I - —

1 «V/3 + g «V/3 + 2g— — exp erfc ,_ ,

2
/3 2\//3g

<g

. a a V/3 + g
Grf
Wg - GXP —J—

x erfc «£ + £, 0<g
2V^g

exp (- aV- 7 - yg)

2(1 + V-/37)

exp (aV— 7 — 7g)

2(1 - V^7)

i «V/3 + gexp
1 +07

7 exp

X erfc ==

—

2V/3g

(— aV— 7 — 7g)

<g

2(1 + V-0 7 )

- 7 exp (aV— 7 - 7g)

2(1 - V^3t~)

Xerfc (_^ +V^7g)
aV/3 + g

0(1 + 07)

2V/3g

exp

. aV/3 + 2g ,
1 / a2\X erfc - -^— + -7= exp (

- —
),

<g
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TABLE I (Continued)

Pair

No.

Coefficient F(f) for the

Cisoidal Oscillation

Coefficient G(g) for the

Unit Impulse

V^ exp (- aV/>) a^- 2
*c-v( **}

814.
1 + VJ3£

exp (— aVp)

2PgylTg "V 4g/

,1 aV/3 4- g f
aV/3 + 2g

H r= exP erfc i=— .

/3V/3 P 2"V0g

<g

1
exp
W^ +g

erfc
aV^ +2g

,815.
Vp(l + ->lpp)

Vp exp (- aV/>)

V/3 2V/3g

< g

V— 7 exp (— aV— 7 — 7g)
816.

817.

818.

(/> + 7)(1 + V/3/0

exp(- a<p + &)

^exp(- a V/, 4-/3 4- aV/3) --

2(1 + V-/37)

XerfC (2^|-
V_7g

)

V- 7 exp (aV— 7 - 7g)

2(1 - V-/S7)

V/3(l + /37) ^

Xerfc"
V' + 2

', 0<g
2V/3g

- exp (2aV/3) erfc ( V/3g + J?L H
,

<g
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TABLE I (Continued)

Pair

No.
Coefficient F(f) for the

Cisoidal Oscillation

Coefficient G(g) for the

Unit Impulse

819. exp (- aV/> + /3) - exp (- «V/3 - 7 - 7g) erfc 1 -~
P + y

V/> + /3exp (- a^lp + B)

I V;§
+ l exp ( - a^p + p + aV/3) "

£

V/> + /3exp (- aV/> + B)

" V(|8 - 7)g ) + exp (oV/3 - 7 - 7g)

/ v \T

820.

821.

822.

Xerfcl^=+ V(0- 7)gU f 0<g

(2g-02gV^
eXP

( 4g *)'
<g

-== exp (
-~ - 0g + aVjj

JV^g V 4g /

+ exp (2a V/3) erfc ( V/3g + J?L
^ 1

,

<g

— -1 exo (— a^B — v — yp)

exp (- «V/> + /3)

/ ,y \

- exp (a V/3 - 7 - 7g)
/ -- \H

823.

Xerfc
(^i

+V(,3 " 7)f:
)J

V/> + /3
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TABLE I (Continued)

Pair

No.

Coefficient F(J) for the

Cisoidal Oscillation

Coefficient G(g) for the

Unit Impulse

824.
exp (- gVft + /3 + aV/3) _ 1

P

WS+'

825.
exp (- aVp + /3)

(/> + Y)Vi> + /3

841.
V *

exp (- p-\\p\)

842.
1-—=exp (- p-\\p\ - a\p\)

<\P\

843.
s V|p| sin (aV|/>|)

-}[«*(« -sis)

+ exp (2aVS erfc ( V/3g + ^Ljl
,

< g

.
exp (- aV/3 - 7 - 7g)

2V/3 - 7 L

X erfc (^j= - V(/3 - ?)g
j

— exp (a\/3 — 7 — 7g)

X erfc(^ + V(/3- y)gX\, 0< g

P* ^/ P
sin ——r C

2
r •

v\i\ L 4|g| \ V27r|g|

— COS T-j—r J) I -
, ,

, I

4|g| \V27r|g|/J

1 / f==cos

1

v* g

p
2

f
p

exp— —r-7-rerfc
2 Vtt((t + 5) " 4((T+*g) 2 Vo- + ig

1 P
2

+ exp
2 Vir(<r - ig) 4 (a - ig)

X erfc
2 A1a — *'g

a

27Tg2

a2
cin ^ \c( a

\
2|g|

Sm
4|g|/ \V2T|g|/

, / . a2 a2 a2 \
+ I Sin —r—r + t-7—r COS —j—r I

V 4|g|
r

2|g| 4|g|/

\V27|7T/J
X5

A star marks a pair as being the limit approached by regular pairs.
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TABLE I (Continued)

Pair

No.

Coefficient F(f) for the

Cisoidal Oscillation

Coefficient G(g) for the

Unit Impulse

844.
\l\p\ sin (aV \p\)

845. cos (a^\p\)c-0M

846.
sin (a^Tp\)e"0w

vFl

861.

862.*

exp [- c^lpip + a)]

Vp(£ + a)

Va+T^pC-W^ + h)]
'/> +

863/ exp[- W(/> + a) (/> + £)]

±
**-|*IL 4 IS I \V2ir|g|/

wr)l 0<±s
V2t « /J

cos—j—r C
4 g

+
fa

*g

t(/32 + S
2
) 4(/3 + ig)Vir(/3 + ig)

f a2
"I

f
ia

X exp I — I erf— - -

la

403 -ig)V,r(/3 -ig)

X exp —77- -erf
L 40 -ig) J 2<&-ig

1 r a2
]

2i Vtt(/3 + «g)

eX>
L 4(0 + ig) J

Xerf

za

1

2V/3 + *'g 2iVir(0 - ig)

X exp
L 4(/3-/g)J

erf
fa

2V/3 - Ig

e-W//^Vg2- CA, C<g

r*«
e# (g - c)

-Zo^Vg2 -C2

jJ,
C<g

c{a-P) _,+
2Vp- -

c
-li«+A» J

g- - c-

X Vg2 - c
2

) ,
c <

A star marks a pair as being the limit approached by regular pairs.
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TABLE I (Continued)

Pair

No.
Coefficient F(f) for the

Cisoidal Oscillation

Coefficient G(g) for the

Unit Impulse

864.* w+i exp [_ c^ {p + a){p +m r***Wk - c)

865.*

866.

867.

868.

869.

871.*

872.

881.

891.

exp (- cVp2 + a2
)

exp (- cV/>2 + a2
)

V/>2 + a2

exp (- a V/32 - £2

exp (- aV/32 - £
2
)

V/32 - £
2

(Vp2 + a2 + /»)"

V^2 + a2

cos (a V/32 - p2
)

exp ( — rylp2 + a2
)

sin (a V/32 - £
2
)

V/32 - £2

tan"1 -—

—

£ + P

(p + 0)-a log (p + fi)

-/3

2 L Vg2 - c
2 V

&o(g — C) —
Vp2 - c2

/o(aVg2 - C
2
),

aPKiifiili* + g
2
)

TrVa2 + g
2

-iT (^Va2 + g
2
)

^(^)V,(aVF^),

5^o(g + a) + i^oO - a)

r < g

afiMHa* ~
g
2
)

2Va2 - g2

|/o(/3Va2 - g
2
),

- e
p" sin rg,

,
- a < g < a

— a < g < a

<g

r(a)
*-V*DKa) - log g], < g

A star marks a pair as being the limit approached by regular pairs.
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TABLE I (Continued)

Pair

No.
Coefficient F(f) for the

Cisoidal Oscillation

Coefficient G(g) for the

Unit Impulse

892.

893.*

894.

p~a log p, < R(a) < 1

log P _ , im
log (p + 0)

p ;]Z p + fi

, P + 7

<K«)-logg
x

r(a) r
' ^ g

*(1) - log g, o< g

i (r* _ e
-y°

)t o < g

Part q. Other Transcendental Functions off.

901.

902.

911.

912.

913/

914.

915.

916.

917.

exp p
2 erfc p

i
exp
G)

erfc

(i)

p*-aKi_a(ap), < R(a) < 1

K (ap)

-Koiap) - hm
P /3-vO P + P

p^Ia^(ap)

^exp (- |f).

V=|exp(-2Vi),

(fl
2 - ^,2)i-i^(V/32 - £2

)

(p2+/2
)
-^

i(27rpVp2+/2
)

2To03V7^T2)

Vt
r(«)

i^r 2 - /is^-10)*-(g2 - a*)

Vg2 _ fl
2

'

cosh" 1 £
,

V^r(a)
(2a)*-<V - ««)—".

0<g

<g

a < g

a < g

a < g

— a < s. < a

=(?$t)"
+1^ !

wv?ti)

(p
2 + g

2)-»Xi(27rpV P
2 + g

2
)

expC-pVgM1^)
2(g

2 + /3
2)*

* A star marks a pair as being the limit approached by regular pairs.

44
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TABLE I (Continued)

Pair

No.
Coefficient F(j) for the

Cisoidal Oscillation

Coefficient G(g) for the

Unit Impulse

918.

919.

920.

921.

922.

923.

924.

925.

931.

932.

933.

Ko(a\p\)

\p\Ki(a\p\)

^Jp Kiia-fp)

TPK
^~

p) -l

V£ exp (p^Kiif)

i»B)'«Q)
^pKvH(p)Kv.i(p), - f < R(v) < f

4pllv-x(p)I-v-x(P)J^

<lpIv(p)Kv+h (p)

2Va2 + g
2

2V(a2 + g
2
)
3

- exp (-£)'
a

4?

(-8exP( -Til _ l
>

-^==exp (-k2
),

(2g)"* exp (- 2->/2i),

-r=/2a-l(2V2g),
V»g

0<g

<g

<g

0<g

<g

<g

VTrCy
2" + y-

V2g(g2 - 4)

V2V + y- 2
")

2 <

W7Tg(4-g2
)

(- 1)V+* +X"2°-i)

, 3' - Kg + Vg
2 - 4),

<g < 2

V27Tg(4 - g
2
)

* = |(g + Vg2 - 4), < g < 2



PRACTICAL APPLICATION OF

TABLE I (C

THE FOURIER INTEGRAL 689

ontinued)

Pair

No.

934.

935.

936.

981.*

982.*

983.*

984.*

985.*

986.*

987.*

Coefficient F(f) for the

Cisoidal Oscillation

v^[/-!+^«(p)i
r
-f-*+«(p)T

W) - - Hm —£-=
TT/3-^0/3 2 + /*

»o(/-/o), limby981=

»o(/-/o)+*o(/+/o), Km by 981 s

*o(/ - /o) - *o(/ + /•), Hm by 981=

Li(/) = Hmfxii)*-^', < ±/
0—o\ 2/

M/) = Km(|l/l +X/ + /i^~«/'

2
2a

(g + V^TI)*- 2*

= (4 - g
a
)-»/2«-i(«V4 - g

2
),

- 2 <g <2

Coefficient G(g) for the

Unit Impulse

7rV7rg(g2 + 4)
<g

tf -4)-»/fc_i(6V?-4), 2 <g

cis(2x/ g)

2 cos(27r/og)

il sin(27r/ g)

— *'2irg

*27Tg
+ XS»o(g)

7T-,+ ^-•l(«) + M^o(g)

A star marks a pair as being the limit approached by regular pairs.
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TABLE II

—

Admittances of

No.

Admittance Y(p)

Illustrative System
Cause and Effect

Cause: Unit Impulse = &o(0
Effect: dUY{p)

403*

Cp + G
Y{p)

LC{p - p x){p - pt)

Inductance L and resistance R in series

with parallel combination of capacity C
and conductance G. Cause: Voltage

across terminals. Effect: Current
through network.

- (RC + LG) ± A

\ l{Cp l + G)e** - (Cp2 + G)e*>q,

< /

2LC

A = V(i?C - LG) 2 - 4LC.
448, 449

Y(p) = Cp + G

Same as 1, except R = 0, L = 0.

C*i(0 + G#o(*)

403*. 404*

F(£)=exp[-^V(£+ P)
2 -<r2

j

Semi-infinite smooth line (resistance R,

inductance L, conductance G, and capac-

ity C per unit length). Cause: Initial

voltage. Effect: Voltage at distance x

from end.

v = (LOT*, k = (i/O*. <x - R/(2L),

P = G/(2C), p = « + /3,

2 = V/2 - (x/z;)
2
.

-p(-?W'-i)

i>z i<

a = a —

863'

Y(P) = \ aJ
£ + P - <f

k Vp + p + a

X exp

i-(-?)*('-0
[-|V(/. + p)« -

<hJ +*id
Same as 3, except Effect: Current at dis-

tance x from end.

— Ji(<rz) - aIo(<rz)
,

x-<t
v

864'
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and Transients in Physical Systems

Cause: Unit Step (0, 1)

-•-iG).x-J
Effect: dK[Y(p)lp]

415*

Cause: Unit Cisoid X Unit Step (0, 1)

= e'o'B-iit), X = §
Effect: 9KLY{p)Kp - Po)]
440*

1 . Cpx + G .,,

i? + G" 1
A/>i

(C^o + GK" +
(C/>, + G)ep ''

A/> 2

LC(/>o - />i)(/>o ~ Pi) A(pi - p )

A(p2 - p )

</

448, 454, 415* 452, 453

C#o(0 + G,

403*, 415*

< / C£>„(0 + (Q>o + G)ePot
,

438, 441*

< t



692 BELL SYSTEM TECHNICAL JOURNAL

TABLE II

No.

Admittance Yip)

Illustrative System
Cause and Effect

Cause: Unit Impulse

Effect: 3>IZY(p)

Y(p) = exp (- yV/> + 2/3)

Same as 3, except L = 0.

y = x^lRC.

' «p( -

!.
2^/V

2/Vtt/ ( 4/
< /

817

Y(p) = u<p + 2/3 exp (- y<p + 2/3)

Same as 4, except L = 0.

y = x^JRC, u = ^~CJR.

u(y* - 2t)

4*2 Vtt/
expf -£-2/3/Yo </

820

F(p) = exp(- yVft + 2/3)

W^ + 2/3

-4=exp(-^-2/»Y < *

Same as 3, except L = and Cause:

Initial current.

y - *V#C, u = ^~CjR.

823

F(/0 -14
k vp + 2a

X exp [^ - ~ V^(p + 2a)l

Same as 4, except G = 0.

i
exp (-T) #o0"O
« L 2

I
^

862*

r<« =*v
p + 2a »o(0 + kae-a,£l 1 (at) + /„(«/) ].

< /

Same as 3, except G = 0, ac = 0, and

Cause: Initial current. 553 s
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Continued

Cause: Unit Step (0, 1)

Effect: 9lZlY(p)/p]

Cause: Unit Cisoid X Unit Step (0, 1)

Effect: eiilY(p)/(p-M

![exp(-yV2/3)erfc(-^r- <2&\

+ exp (y V20) erfc (-77=+ ^2/Jw)1 -

< /

f^Texp (- y V2/3 + p )

X erfc ("Tr
- ^(20 + p )t \

+ exp (;yV20 + £ )

X erfc (-^= + V(2/3 + p )tj\ , < t

818,415* 819

JLexp(-£-2^W^
Vtt* V 4' 7 2

X [exp (-yVS/J) erfc (-^=- V2J3A

- exp (y V2/3) erfc ( -^= + V^/ )1

,

Vtt/

+

< t

821,415*

exp ("4r *")

MV2^
2

+ ^Vo'[exp(- yV^+7o)

X erfc (-^ - V(2/3 + p )t\

- exp (yV2/3 + £„)

X erfc (-3L + V(2/3+£ )/Yj , < /

822

—!—= \exp(- y^2(3)
2«V2/3L

X erfc ( -^= - V2/3M - exp (yV2j8)

Xerfc (_z_ + vp)],

gP.«

< /

824, 415*

[exp (- yV2/3 + p )

2w\2(3 + p L

Xerfc(-^=- V(20 + />„)M

- exp (y^W+To)

X erfc (^= + V(2/3 + £o)A 1 , 0</

825

1 _

k
6

861

'hiocz),
X-<t
v

ke^'tfatliiat)

+ (1 + 2at)h{at)~], < /

554*
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TABLE II

No.

Admittance Y{p)

Illustrative System
Cause and Effect

Cause: Unit Impulse
Effect: 9IZY(p)

10

11

FW-«p(-f-{>)
Same as 3, except R/L = G/C.

-(-f)*H)
601*

V/» + 2a
Y(P)=-r

yp + Vp + 2a

Semi-infinite smooth line (resistance R,

inductance L, and capacity C per unit

length) . Cause : Voltage applied through

resistance R = ^L/C. Effect: Voltage

at end of line, a = R/(2L).

>o(0 + - r-Ttfofl, </

559*

12 Y(p) = exp (— yyp)

i + V^/x

Semi-infinite smooth line (resistance R
and capacity Cper unit length). Cause:

Voltage applied through resistance i?o-

Effect: Voltage at distance x from end.

y = x ^R~C, X = R/(CRo2
).

^exp(-^)-Xexp(yVx + X0

X erfc (
-~ + V\*V < /

809

13 r«- dp exp (— y V/>)

i + V^/x 2i

Same as 12, except Effect: Current at

distance « from end.

u = VCAK.

(yVx + x

+vnV
+ mXVx exp (yVx + \t)

X erfc ( -^-=

\2V/
< t

814

14 F(p) =
mV/>

l + V/>/x

Same as 13, except * = 0.

u = Vcy*.

ttVx["* (0 - \A + ^erfc Vx/1

,

< /

550'
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Continued

Cause: Unit Step (0, 1)

Effect: cW[F(/>)//>]

Cause: Unit Cisoid X Unit Step (0, 1)

Effect: miY(p)/(p - p )2

H-f>exp

602*
v

exp - - (p + p ) + p t\,

604

1 - WVoiat) + 7i(a0], < /

560, 415*

erfc -^p - exp (;y Vx + X/)

2\/

Texp (- y^ipa)
\e™ \*~ erfc

Xerfc(^ + Vx/V < / +
exp (yV/>o)

1 - V^o/X

. Jy-jpi)
V/» /X \2V/ /

erfcfe+v^)]
exp (yVx + X/)

811,415*

1 - po/\

Xerfc( -^r-f- Vx/Y <*

812

«Vx exp (-vVx + X/) erfc | ~= + Vx/Y
\2V/ /

M^o
„P„,r

exP (- Wp<0R
< /

+ V/» /x

Xerfc(-^-V^- eXP (^\2V/ / 1 - V^ /X

x-(^ + *)] +4-,
X exp (yVx + X/) erfc ( ~^=+ Vx/Y

815 816 < /

ttVx^' erfc Vx/,

551

</
i - £o/X |_\ X ^° X

552

+ e
x

' erfc Vx/I
, < /
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TABLE II

No.

Admittance Y(p)

Illustrative System
Cause and Effect

Cause: Unit Impulse

Effect: dllY{p)

15 Y{p) = Coftexp(-yVft)

1 + V^/M

C (y
2 - lyt<y. - 2t + 4^2

)

Semi-infinite smooth line (resistance R
and capacity Cper unit length). Cause:

Voltage applied through capacity Co-

Effect: Current at distance x from end.

y = x^lRC, m = C/(i?C 2
).

4/*

Xexp (~i0_
- CVexp (yV/i + ni)

\fe

Xerfcfe +v4 < t

810

16

Same as 15, except x = 0.

— C jU^o(/) + Co(2m* - 1) M

2/ Virf

- CVV erfc V^, < /

544 s1

17 Ffe)

w2n+ir-V(^, + \)2 + W2 _|_ (p _|_ X)]-
^e-uAn(wt), < /

*V(£ + X)2 + w2

Semi-infinite artificial line (series element:

resistance i? and inductance L; shunt

element: conductance G and capacity C\

R/L = G/C; mid-series termination).

Cause : Applied voltage. Effect : Current

in wth section.

k = (L/C)*, \ = R/L = G/C, w = 2(LO~J 575

- >-^vR \p + 2a

X (V/>+ 2a + V/>)-*"

Semi-infinite artificial line (series element :

resistance R; shunt element: capacity C;

mid-series termination) . Cause : Applied

voltage. Effect: Current in nth section.

a = 2/(RC).

| *-*[Y.-i(«0 ~ 2/.(«0 + Wol)]
K

</

573
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Continued

Cause: Unit Step (0, 1)

Effect: SW[F(/>)/£]

Cause: Unit Cisoid X Unit Step (0, 1]

Effect: WllY(p)l(p - po)]

*V5«(-S)
- Com exp (y Vm + m0 erfc (-2-. + VJ21,

809

C JiL - Com^' erfc V/i/,
> irt

543

< /

lr rVnt \
exp(-y^Jp )

L i + V^o/m

Xerfc

X exp (yV/i + /*0 erfc (
-3L + VMA ,

813 < /

< / C„Ji + CoM^ I" Po ePQt _ £_o IPo gP0 ,

°\7r/ 1-^Lm M^M

X erf Vpi - «"' erfcV^ ,
< t

545

|*-"J.(aO, </

574
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TABLE II

No.

Admittance Y(p)

Illustrative System
Cause and Effect

Cause: Unit Impulse

Effect: S>liY(p)

19 Y{p) =exp(s - |*|V^ + 1)

Vertical atmospheric waves, axis of x

vertically upwards, velocity = 1, height

of homogeneous atmosphere = \. Cause:

Vertical displacement at x = 0. Effect:

Vertical displacement at time /of particle

whose undisturbed position is x.

»„(/ - 1*1) -
x \ex

V/2 -

x/i(V/» -*2
), |*| < /

865*

20
exp (X - |*|V/>2+ 1)

Same as 19, except Cause: Vertical force

at x = 0.

J ^P-x>), \x\ < I

866

21 Yip)- ^^pK x{r^p)
xr

Flow of heat in infinite plane. Cause:

Temperature impulse at origin, tempera-

ture maintained zero along x-axis, except

at origin. Effect: Temperature of point

with coordinates (x, y) at time t.

= V*2 + y*.

|y| / r2 \ o <t

921

22 (-W0]7(£) = i[^l -exp | -y

Horizontal oscillations of deep viscous

fluid, axis of y vertical, bottom plane

y = 0, kinematic coefficient of viscosity

= v. Cause: Applied horizontal force.

Effect: Displacement of particle at y at

time t, y assumed small.

< /

803

23 Yip)--w?)
Water waves radiating from center in an

unlimited sheet of uniform depth h,

gravity constant = g. Cause: Pressure

at the origin. Effect: Velocity potential

at distance r, time t. c
2 = gh.

r-<i
c

912
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Continued

Cause: Unit Step (0, 1)

Effect: QlllY(p)/pl

Cause: Unit Cisoid X Unit Step (0, 1)

Effect: drt[Y{p)l(p - p )2

922, 415*

\2j' / 2VW

804*. 415*

Po *>•• 2\W

«** r / ipo\

+ ^(,V5)«fc(
5
5-+«i)].

805 < /

i-cosh-^, f-<t
2r r c

913*
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TABLE II

No.

Admittance Y(p)

Illustrative System
Cause and Effect

Cause: Unit Impulse
Effect: mY(p)

24 _ sin [(t - y)pl

sin irp

1 sin y
2tt cosh x — cos y

Flow of electricity in thin plane infinite

strip, axis of x along lower edge of strip,

axis of y across, width of strip = ir, upper

edge (y = ir) maintained at zero potential.

Cause: Potential along x axis. Effect:

Potential at point (x, y).
615

25 Y(p)
- cos [Or - y)Pl

cos irp

Same as 24, except upper edge (y = t)

is insulated.

1 sin \y cosh \x

k cosh x — cos y

616

?6 Y(p) = exp (dp2
)

1 ....« / *
2
\

%4**~r \ 4k//

Linear flow of heat in infinite solid,

diffusivity k, axis of x in direction of flow.

Cause: Initial temperature. Effect:

Temperature at time / at point x.
701

27 Y{p) = cos (tp*)
1 • /*2

, t\

Transverse oscillations of infinite elastic

plate; x and y axes in the plate, but all

points with same y coordinate have same

displacement. Cause: Initial displace-

ment. Effect: Displacement perpen-

dicular to plate at time t of point whose

coordinate is x.
752
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Continued

Cause: Unit Step (- h + h)

Effect: dKlY(p)/p]

Cause: Unit CisoidX Unit Step (~i +|)
Effect: &KLY(p)/(p-p )l

1 tanh |x
tan-1 !

X tan %y

i

617, 415*

1 , sinh \x
- tan-1 —:—

—

it sin fy

618, 415*

2V K*
i exp (k# 2 + pox) erf ( -^= + p^ict

)\ 2 Vk/ /

727,415*

^(vs)^)]

754, 415*

728, 440*

| exp (pox + «W) erf ( -^= + £oV*7 )
\2V*7 /

+ I exp (£o* — itpf?)

Xerff— * +/*V=a)
\2V-s7 /

755, 440*
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TABLE II

No.

Admittance Y(p)

Illustrative System
Cause and Effect

Cause 1 Unit Impulse

Effect: d1lY{p)

28 Y(p) = sin (tffi)

Same as 27, except Cause: Initial velocity. u 5
(vfc)~

c
(vis)J

756

29 Y(p) = cos (Wl - p2
)

Same as 19, except Cause: Initial dis-

placement multiplied by e~x
. Effect:

Vertical displacement multiplied by e~x

at time t of particle whose undisturbed

position is x.

hL&o(x - t) +
//ifV/2 - x2

)

2 V/2 - X2

o(x + /)]

- t <x <t

871
=

30 Y(p) =
in (Wl - p2

)sin i/o(V/2 - x2
), - t <x <t

Vi - p

Same as 29, except Cause: Initial velocity

multiplied by e~x.

872

31 Y{p) = <H«»I

Flow of electricity in infinite thin plane,

x and y axes in the plane. Cause: Po-

tential along x axis. Effect: Potential

at point (x, y).

ir x2 + y
2

632

32 Y(p) = cosh (atp)

Transverse motion of infinite stretched

elastic string, axis of x along equilibrium

position of string, velocity of propagation

along string = a. Cause: Initial dis-

placement. Effect: Normal displace-

ment of particle at x at time /.

§[»o(* ~ at) + &o(x + a/)]

619*
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Continued

Cause: Unit Step (-$, +})
Effect: ®i[Y{p)lp]

Cause : Unit CisoidX Unit Step (-£,+§)
Effect: &?ZY(p)/(p-pt)]

•[KMAW-?)
>«<A)+-JWS+5)]

757, 415*

1 X
- tan" 1 -j—

r

* m

633, 415*

±i ai<±x

620, 415*

f ± f «*»* cosh (ofpi), a* < ± x

[ £e"o* sinh (a# ), - at < x < at

621, 440*

45
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TABLE II

No.

Admittance Y(p)

Illustrative System
Cause and Effect

Cause: Unit Impulse
Effect: WY(p)

33 Y(p) = sinh (atp)

ap

Same as 32, except Cause : Initial velocity.

2a

622

— at < x < at

34 Yip) =-cos (a^J\p\)e^p\
p

Waves on deep water, axis of y vertically

upwards, axis of x in the surface, density

= p, gravity constant = g, y = 0.

Cause: Initial surface-impulse along x

axis. Effect: Velocity potential at time

/ at point (x, y).

- y +
la

wp(x2 + y
2
) 4pVtt(— y + ix)m

xexp
[
_
*(-?+*)]

Xerf
la

2V- y + i.

h =
V2tt

a = tyjg-

+

y -i z-v

4pVtt(- y - «'x)
3/2

XexpT- a2

]L 4(-y-i*)J

Xerf
la

2V- 7 - iiX

845

35 Y(P)= -^Msin(aV|p|)

Same as 34, except Effect: Surface eleva-

tion at time t at point x.

7= +
27rp.r2 Vg p|.r| V27rg|x|

X {
[cos (£tt/z

2
) - wh 2 sin (£7r/A

!)]C(/0

+ [sin (lirh*) +irh2 cos (^tt/a
2
)]5(/0 j

843*

36 YiP) = rg^^±e^
Same as 34, except Cause: Initial surface

elevation.

V*

2Wtt(- y + ix)

Xerf ,
"

2V- y + m

, i
2j'V7t(- y - «c)

Xerf

846

4(— y — ix)

ia

2V — y — iXX
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Continued

Cause: Unit Step (— \, +5)
Effect: MlY(p)/p]

Cause: Unit CisoidX Unit Step (-h+h)
Ettecf.miY(p)/(p-Po)l

[ =fc §*, at < ±x
" — , - at < x < at

2a'

623, 415*

1 1± epo* sinh (a# )i a/ < ± z
2a£o

[epo* cosh (fl//> ) — 1],
2aP° - at < x <at

624, 440*

^-J—?-rCsin(M2)-5(A)

+ cos fch*)C(h)']i
0<±*

844
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TABLE II

No.

Admittance Y(p lt p2)

Illustrative System
Cause and Effect

Cause: Unit Impulse
Effect: dltfiliiYipu p*)

37 Y(pu Pi) = cos OipS + £2
2
)]

Transverse oscillations of infinite elastic

plate, x and y axes in the plate. Cause:

Initial displacement. Effect: Displace-

ment perpendicular to plate at time / of

point whose coordinates are x and y.

1 . x2 + y
2

-— sin
4tt/ U

759, 758

38 Y(pi,p2) =exp(-W|£ 1
2 + £2

2
|)

Velocity potential function in semi

infinite incompressible fluid, x and y
axes in surface of fluid, z extending

down, z == 0. Cause: Velocity potential

at surface, z = 0. Effect: Velocity po-

tential at point (x, y, z).

1

2w (x 2 + y
2 + z2)

3/2

867, 919

39 Y(pu p2)
= exp (-zV|j>i2 + />2

2
|)

^\pi2 + p7~\ 2tt Vr8

-f y
2 + 2

2

Newtonian potential function in semi-

infinite solid, x and y axes in face of

solid, z extending into solid, z = 0.

Cause: Normal potential derivative at

surface, z = 0. Effect: Potential at

point (x, y, z).
868, 918
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Continued

Cause: Unit Step (- h + h)

Effect: SM^lYipu p2)l(pip2)l

Cause : Unit Cisoid X Unit Step (-$, +|)

Effect: m@ttt
(pi-po)(Pi-po)

*Kvfr>(vb)
+ c(veM£;)]

753; 754,415 s

.ry
J-tan-1 -,.

t

* ,
V*2+ y»+ s2+ y

7- log .
=

4tt Vx2 + y
2+ 22 - y

. y , Vx2 + y
2+ z2+ x

+ T- loS ,

=
4tt Vx2 + y

2+ 22 - x

s * -1 %y
tan l —

,
=

2x 2 Vx2+ y
2 + 22

t

fThis solution was obtained by double integration of the unit impulse solution, not by the

operation indicated at the head of the column. The two pairs required for this operation nave

not yet been found in closed form.


